Maximizing general first Zagreb and sum-connectivity indices for unicyclic graphs with given independence number

Ioan Tomescu

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania

Received 27 November 2017, accepted 15 May 2018, published online 8 August 2018

Abstract

In this paper it is shown that in the class of unicyclic graphs of order \(n \) and independence number \(s \), the spider graph \(S_{\Delta}(n,s) \) is the unique graph maximizing general first Zagreb index \(0_R^\alpha(G) \) for \(\alpha > 1 \) and general sum-connectivity index \(\chi_\alpha(G) \) for \(\alpha \geq 1 \).

Keywords: Unicyclic graph, independence number, general first Zagreb index, general sum-connectivity number, spider graph, Jensen inequality.

Math. Subj. Class.: 05C35, 05C69

1 Introduction

Let \(G \) be a simple graph having vertex set \(V(G) \) and edge set \(E(G) \). For a vertex \(u \in V(G) \), \(d(u) \) denotes the degree of \(u \) and \(N(u) \) the set of vertices adjacent with \(u \). The maximum vertex degree of \(G \) is denoted by \(\Delta(G) \). \(K_{1,n-1} \) and \(C_n \) will denote, respectively, the star and the cycle on \(n \) vertices. The distance between vertices \(u \) and \(v \) of a connected graph, denoted by \(d(u,v) \), is the length of a shortest path between them. For \(x \in V(G) \) and \(A \subset V(G) \), the distance \(d(x,A) \) between \(x \) and \(A \) is \(\min_{y \in A} d(x,y) \). If \(x \in V(G) \), \(G-x \) denotes the subgraph of \(G \) obtained by deleting \(x \) and its incident edges. Similar notations are \(G-xy \) and \(G+xy \), where \(xy \in E(G) \) and \(xy \notin E(G) \), respectively.

Given a graph \(G \), a subset \(S \) of \(V(G) \) is said to be an independent set of \(G \) if every two vertices of \(S \) are not adjacent. The maximum number of vertices in an independent set of \(G \) is called the independence number of \(G \) and is denoted by \(\alpha(G) \). A unicyclic graph \(G \) of order \(n \) is connected, has \(n \) edges and it consists of a cycle \(C_r \), where \(3 \leq r \leq n \) and some vertex-disjoint trees having each a vertex common with \(C_r \). It is not difficult to see that if
G is a unicyclic graph of order $n \geq 3$, then $\lfloor n/2 \rfloor \leq \alpha(G) \leq n - 2$. The lower bound can be deduced since a unicyclic graph can be obtained from a tree, which is a bipartite graph, by adding a new edge. The validity of the upper bound follows from the property that if $3 \leq r \leq n$ then $\alpha(C_r) \leq r - 2$ (equality holds only for $r = 3$ and $r = 4$).

For every $n \geq 3$ and $\lfloor n/2 \rfloor \leq s \leq n - 2$, the spider graph denoted by $S_\Delta(n, s)$ is a unicyclic graph of order n consisting of $2s - n + 1$ edges and $n - s - 2$ paths of length 2 having a common endvertex with a triangle K_3; in other words, it is obtained from $K_{1,s+1} + e$ by attaching a pendant edge to $n - s - 2$ pendant vertices of $K_{1,s+1} + e$. We have $\alpha(S_\Delta(n, s)) = s$.

The graph, denoted by H_n, is defined as follows: for $n = 2k$ it consists of a cycle C_k and k pendant vertices adjacent each to a single vertex of C_k such that each vertex of C_k has degree three. For $n = 2k + 1$, H_n is composed from C_{k+1} and k pendant vertices adjacent each to a single vertex of C_{k+1} such that k vertices of C_k have degree three and one vertex has degree two.

For other notations in graph theory, we refer [16].

The Randić index $R(G)$ [12], one of the most used molecular descriptors in structure-property and structure-activity relationship studies [5, 6, 7, 11, 13, 14], was defined as

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-1/2}. $$

The general Randić connectivity index (or general product-connectivity index) of G, denoted by R_α, was defined by Bollobás and Erdős [1] as

$$R_\alpha = R_\alpha(G) = \sum_{uv \in E(G)} (d(u)d(v))^\alpha, $$

where α is a real number. Then $R_{-1/2}$ is the classical Randić connectivity index and for $\alpha = 1$ it is also known as second Zagreb index and denoted by $M_2(G)$.

This concept was extended to the general sum-connectivity index $\chi_\alpha(G)$ in [20], which is defined by

$$\chi_\alpha(G) = \sum_{uv \in E(G)} (d(u) + d(v))^\alpha, $$

where α is a real number. The sum-connectivity index $\chi_{-1/2}(G)$ was proposed in [19].

The general first Zagreb index (sometimes referred as “zeroth-order general Randić index”), denoted by $^0R_\alpha(G)$ was defined as

$$^0R_\alpha(G) = \sum_{u \in V(G)} d(u)^\alpha, $$

where α is a real number. For $\alpha = -1/2$ this index was defined in [9] and [10] and for $\alpha = 2$ it is also known as first Zagreb index and denoted by $M_1(G)$. Notice that $\chi_1(G) = ^0R_2(G) = M_1(G)$.

Thus, the general Randić connectivity index generalizes both the ordinary Randić connectivity index and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary sum-connectivity index and the first Zagreb index [20].

Several extremal properties of the sum-connectivity and general sum-connectivity indices for trees, unicyclic graphs and general graphs were given in [3, 4, 19, 20].
Das, Xu and Gutman [2] proved that in the class of trees of order \(n \) and independence number \(s \), the spur \(S_{n,s} \) maximizes both first and second Zagreb indices and this graph is unique with these properties. Tomescu and Jamil [15] showed that in the same class of trees \(T \), \(S_{n,s} \) is the unique graph maximizing general first Zagreb index \(0 R_\alpha(T) \) for \(\alpha > 1 \) and general sum-connectivity index \(\chi_\alpha(T) \) for \(\alpha \geq 1 \).

In this paper, we show that the spider graph \(S_\Delta(n, s) \) is the unique graph maximizing general first Zagreb index \(0 R_\alpha(G) \) for \(\alpha > 1 \) and general sum-connectivity index \(\chi_\alpha(G) \) for \(\alpha \geq 1 \) in the set of unicyclic graphs of order \(n \) and independence number \(s (\lfloor n/2 \rfloor \leq s \leq n - 2) \).

2 Preliminary results

The following inequality may be deduced in a straightforward way:

Lemma 2.1. Let \(x > 0 \). If \(\beta < 0 \) then \((1 + x)^\beta > 1 + \beta x\).

The general first Zagreb index and general sum-connectivity index of \(S_\Delta(n, s) \) are given by:

\[
0 R_\alpha(S_\Delta(n, s)) = (s + 1)^\alpha + s(1 - 2^\alpha) + 2^\alpha n - 1;
\]

\[
\chi_\alpha(S_\Delta(n, s)) = (n - s)(s + 3)^\alpha + (2s - n + 1)(s + 2)^\alpha + (n - s - 2)3^\alpha + 4^\alpha.
\]

The cycle \(C_n \) has independence number equal to \(\lfloor n/2 \rfloor \).

Lemma 2.2. Let \(n \geq 5 \). Then (2.1) holds for \(\alpha > 1 \) and (2.2) holds for \(\alpha \geq 1 \):

\[
0 R_\alpha(S_\Delta(n, \lfloor n/2 \rfloor)) > 0 R_\alpha(C_n)
\]

\[
\chi_\alpha(S_\Delta(n, \lfloor n/2 \rfloor)) > \chi_\alpha(C_n).
\]

Proof. We get \(0 R_\alpha(C_n) = n2^\alpha \) and \(\chi_\alpha(C_n) = n4^\alpha \). If \(n \) is even, \(n = 2k \), (2.1) can be written as

\[
(k + 1)^\alpha - 2^\alpha k + k - 1 > 0,
\]

where \(k \geq 3 \) and \(\alpha > 1 \). Consider the function \(\varphi(x) = (x + 1)^\alpha - 2^\alpha x + x - 1 \), where \(x \geq 3 \). We get \(\varphi'(x) = \alpha(x + 1)^{\alpha - 1} - 2^\alpha + 1 \geq \alpha4^{\alpha - 1} - 2^\alpha + 1 \). By letting \(\psi(y) = y4^{y-1} - 2^y + 1 \), where \(y > 1 \), we have \(\psi'(y) = 4^{y-1}(1 + y \ln 4) - \ln 2 \cdot 2^y \). Since \(2^y > 2 \) we deduce

\[
\psi'(y) > 2^y \left(\frac{1 + y \ln 4}{2} - \ln 2 \right) > 2^y \left(\frac{1 + \ln 4}{2} - \ln 2 \right) = 2^{y-1} > 0.
\]

Because \(\psi(1) = 0 \) we have \(\psi(y) > 0 \) for \(y > 1 \), thus \(\varphi(x) \) is strictly increasing for \(x \geq 3 \) and \(\alpha > 1 \). It follows that it is sufficient to prove (2.3) for \(k = 3 \). For \(k = 3 \) (2.3) becomes

\[
4^\alpha - 3 \cdot 2^\alpha + 2 > 0,
\]

or \((2^\alpha - 1)(2^\alpha - 2) > 0 \), which is true for \(\alpha > 1 \).

If \(n = 2k + 1 \), where \(k \geq 2 \), (2.1) becomes (2.3) in which \(k \geq 2 \). For \(k = 2 \) (2.3) yields \(3^\alpha - 2 \cdot 2^\alpha + 1 > 0 \), which holds by Jensen inequality since function \(x^\alpha \) is strictly convex for \(\alpha > 1 \).
In order to prove (2.2) consider first the case \(n \) even, \(n = 2k \). In this case (2.2) is
\[
k(k + 3)^\alpha + (k + 2)^\alpha + (k - 2)3^\alpha - (2k - 1)4^\alpha > 0, \tag{2.5}
\]
where \(k \geq 3 \) and \(\alpha \geq 1 \). For \(k = 3 \) (2.5) becomes \(3 \cdot 6^\alpha + 5^\alpha + 3^\alpha - 5 \cdot 4^\alpha > 0 \), which is true since \(5^\alpha + 3^\alpha \geq 2 \cdot 4^\alpha \) by Jensen inequality and \(3 \cdot 6^\alpha > 3 \cdot 4^\alpha \).

Consider the function \(\xi(x) = x(x + 3)^\alpha + (x + 2)^\alpha + (x - 2)3^\alpha - (2x - 1)4^\alpha \), where \(x \geq 3 \). We get \(\xi'(x) = (x + 3)^\alpha + ax(x + 3)^{\alpha - 1} + \alpha(x + 2)^{\alpha - 1} + 3^\alpha - 2 \cdot 4^\alpha \). We have \((x + 3)^\alpha + 3^\alpha - 2 \cdot 4^\alpha \geq 6^\alpha + 3^\alpha - 2 \cdot 4^\alpha \geq 2 \cdot 4.5^\alpha - 2 \cdot 4^\alpha > 0 \) by Jensen inequality. This implies that \(\xi'(x) > 0 \), hence \(\xi(x) \) is strictly increasing. Thus (2.5) is valid since it holds for \(k = 3 \). If \(n = 2k + 1 \), where \(k \geq 2 \), the proof is similar, using in the same way Jensen inequality.

\[\square \]

Lemma 2.3. If \(n \geq 5 \) and \(\alpha \geq 1 \), \(\chi_\alpha(S_\Delta(n, s)) \) is strictly increasing in \(s \) for \(\lfloor n/2 \rfloor \leq s \leq n - 2 \).

Proof. Let
\[
f(x) = (n - x)(x + 3)^\alpha + (2x - n + 1)(x + 2)^\alpha + (n - x)3^\alpha.
\]
We have \(\chi_\alpha(S_\Delta(n, s)) = f(s) - 2 \cdot 3^\alpha + 4^\alpha \). We will show that \(f(x) \) is strictly increasing in \(x \) for \(n \geq 5 \) and \(2 \leq (n - 1)/2 \leq x \leq n - 2 \). We have
\[
f'(x) = (x + 3)^\alpha - 1(\alpha(n - x) - x - 3) + (x + 2)^\alpha - 1(2x + 4 + 2\alpha x - \alpha n + \alpha) - 3^\alpha.
\]
If the coefficient of \((x + 3)^\alpha - 1 \) is greater than or equal to zero, then \(f'(x) > 0 \) since \(2\alpha x - \alpha n + \alpha \geq 0 \), which implies
\[
(x + 2)^\alpha - 1(2x + 4 + 2\alpha x - \alpha n + \alpha) - 3^\alpha \geq 2(x + 2)^\alpha - 3^\alpha \geq 2 \cdot 4^\alpha - 3^\alpha > 0.
\]
The coefficient of \((x + 3)^\alpha - 1 \) is
\[
x(-\alpha - 1) + \alpha n - 3 \geq (n - 2)(-\alpha - 1) + \alpha n - 3 = -n + 2\alpha - 1 \geq 0
\]
for \(\alpha \geq (n + 1)/2 \).

Suppose that \(1 \leq \alpha < (n + 1)/2 \). We will also prove that \(f'(x) > 0 \) in this case. We can write \(f'(x) = (x + 3)^\alpha - 1E(n, x, \alpha) \), where
\[
E(n, x, \alpha) = \alpha(n - x) - x - 3 + \left(1 + \frac{1}{x + 2}\right)^{1-\alpha(2x + 4 + 2\alpha x - \alpha n + \alpha)} - \frac{3^\alpha}{(x + 3)^\alpha - 1}.
\]

Lemma 2.1 yields
\[
\left(1 + \frac{1}{x + 2}\right)^{1-\alpha} > 1 + \frac{1 - \alpha}{x + 2},
\]
which implies
\[
E(n, x, \alpha) > (x + 1)(\alpha + 1) + 2 - 2\alpha^2 + \frac{\alpha(\alpha - 1)(n + 3)}{x + 2} - \frac{3^\alpha}{(x + 3)^\alpha - 1}. \tag{2.6}
\]
Since \(\alpha - 1 < \frac{n-1}{2} \) and \(x \geq \frac{n-1}{2} \) it follows that \(x > \alpha - 1 \), which implies \((x+1)(\alpha+1) > \alpha^2 + \alpha \). Since \(x+2 < n+3 \) we get \(\frac{\alpha(x-1)(\alpha+3)}{x+2} \geq \frac{\alpha(x-1)(\alpha+3)}{x+2} \) and from (2.6) we obtain

\[
E(n, x, \alpha) > 2 - \frac{3\alpha}{(x+3)^{\alpha-1}}.
\]

If \(\alpha \geq 2 \) then \(\max_{x \geq 2} \frac{3\alpha}{(x+3)^{\alpha-1}} = 5\left(\frac{3}{5}\right)^\alpha \leq \frac{9}{5} \), which implies \(E(n, x, \alpha) > 0 \). The same conclusion holds if \(1 \leq \alpha < 2 \) since in this case we have

\[
x \geq 2 > \alpha, \quad (x+1)(\alpha+1) > (\alpha+1)^2, \quad \frac{3\alpha}{(x+3)^{\alpha-1}} = 3 \left(\frac{3}{x+3}\right)^{\alpha-1} \leq 3
\]

and (2.6) yields \(E(n, x, \alpha) > (\alpha+1)^2 + 2 - 2\alpha^2 + \alpha(\alpha - 1) - 3 = \alpha \geq 1 \).

The following observation will be useful.

Lemma 2.4. Let \(G \) be a graph and \(x \in V(G) \), which is adjacent to pendant vertices \(v_1, \ldots, v_r \). If \(r \geq 2 \) then any maximum independent subset of \(V(G) \) contains \(v_1, \ldots, v_r \).

Lemma 2.5. The function

\[
h(x) = (x - 2)((x + a)^\alpha - (x + a - 1)^\alpha)
\]

is strictly increasing for \(x \geq 2, a \geq 1 \) and \(\alpha \geq 1 \).

Proof. We get

\[
h'(x) = (x + a)^\alpha - (x + a - 1)^\alpha + \alpha(x - 2)((x + a)^{\alpha-1} - (x + a - 1)^{\alpha-1}) > 0
\]

for \(x \geq 2, a \geq 1 \) and \(\alpha \geq 1 \).

\[\square\]

3 Main results

By simple inspection we can see that for \(n = 6 \) spider graph \(S_\Delta(6, s) \) is the unique extremal graph \(G \) of order six and independence number \(s, 3 \leq s \leq 4 \), having maximum \(0R_\alpha(G) \) unless \(s = 3 \) and \(1 < \alpha < 2 \), when \(0R_\alpha(S_\Delta(6, 3)) < 0R_\alpha(H_6) \) (note that \(H_6 \) consists of a triangle \(K_3 \) and three pendant vertices adjacent to different vertices of \(K_3 \)). For \(n = 6, s = 3 \) and \(\alpha \in \{1, 2\} \) both graphs \(H_6 \) and \(S_\Delta(6, 3) \) are extremal. The case \(n \geq 7 \) is settled below.

Theorem 3.1. Let \(n \geq 7, \lfloor n/2 \rfloor \leq s \leq n - 2 \) and \(G \) be a unicyclic graph of order \(n \) with independence number \(s \). Then for every \(\alpha > 1, 0R_\alpha(G) \) is maximum if and only if \(G = S_\Delta(n, s) \).

Proof. The proof is by induction on \(n \). For \(n = 7 \) the proof is by inspection, using Jensen inequality or mathematical software [17]; there are 4 graphs with \(s = 3 \), 15 graphs with \(s = 4 \) and 5 graphs having \(s = 5 \).

Let \(n \geq 8 \) and suppose that the property is true for all unicyclic graphs of order \(n - 1 \). Let \(G \) be a unicyclic graph of order \(n \) and independence number \(s \) having maximum general first Zagreb index. By Lemma 2.2 \(0R_\alpha(C_n) \) cannot be maximum; it follows that \(\Delta(G) \geq 3 \). Its independence number verifies \(s \geq 4 \). Denote by \(C \) the unique cycle of \(G \), whose length is at most \(n - 1 \). \(G \) has at least one pendant vertex. Let \(x_1 \) be a pendant vertex such that the distance \(d(x_1, C) \) is maximum. We shall consider two cases:
Case 1. Let x_1, x_2, \ldots, x_p, where $p \geq 3$ and $x_p \in C$ be the unique path from x_1 to C. By letting $d(x_2) = d_2$, since for every vertex u in $N(u)$ at most two vertices are adjacent, we obtain $s \geq \Delta(G) - 1 \geq d_2 - 1$, or $d_2 \leq s + 1$. Other two subcases may hold:

\begin{itemize}
 \item Subcase 1.1: $\alpha(G - x_1) = \alpha(G) - 1$
 \item Subcase 1.2: $\alpha(G - x_1) = \alpha(G)$.
\end{itemize}

Subcase 1.1. By the induction hypothesis we can write

$$0 R_\alpha(G) = 0 R_\alpha(G - x_1) + 1 + d_2^\alpha - (d_2 - 1)^\alpha$$

$$\leq 0 R_\alpha(S_\Delta(n - 1, s - 1)) + 1 + d_2^\alpha - (d_2 - 1)^\alpha$$

$$= s^\alpha + 2^\alpha(n - s) + s - 2 + 1 + d_2^\alpha - (d_2 - 1)^\alpha.$$

Since the function $x^\alpha - (x - 1)^\alpha$ is strictly increasing for $x \geq 1$ and $\alpha > 1$, it follows that $d_2^\alpha - (d_2 - 1)^\alpha \leq (s + 1)^\alpha - s^\alpha$, which implies $0 R_\alpha(G) \leq 0 R_\alpha(S_\Delta(n, s))$, equality holding if and only if $d_2 = s + 1$. But this equality is not possible. If $d_2 = s + 1$ holds, then two vertices in $N(x_2)$ are adjacent since otherwise we would have $s \geq d_2$. In this case, since $x_2 \notin C$, G would have at least two cycles, a contradiction.

Consequently, $0 R_\alpha(G) < (s + 1)^\alpha + 2^\alpha(n - s) + s - 1 = 0 R_\alpha(S_\Delta(n, s))$, a contradiction.

Subcase 1.2. Next we assume that $\alpha(G - x_1) = \alpha(G)$. If x_2 would be adjacent to a vertex $w \neq x_1, x_3$, the degree of w cannot be greater than one, since in this case the path x_1, \ldots, x_p would not have maximum length. It follows that $d(w) = 1$ and by Lemma 2.4 every maximum independent set of vertices of G includes both x_1 and w. This implies $\alpha(G - x_1) = \alpha(G) - 1$, which contradicts the hypothesis. It follows that $d_2 = 2$. We can write

$$0 R_\alpha(G) = 0 R_\alpha(G - x_1) + 2^\alpha$$

$$\leq 0 R_\alpha(S_\Delta(n - 1, s)) + 2^\alpha$$

$$= (s + 1)^\alpha + 2^\alpha(n - 1 - s) + s - 1 + 2^\alpha$$

$$= 0 R_\alpha(S_\Delta(n, s)).$$

The equality holds if and only if $G - x_1 = S_\Delta(n - 1, s)$ and pendant vertex x_1 is adjacent to a pendant vertex of $S_\Delta(n - 1, s)$. Let u be the vertex of degree $s + 1$ of $S_\Delta(n - 1, s)$. If x_1 is adjacent to a pendant vertex v_2 of $S_\Delta(n - 1, s)$ such that $d(v_2, u) = 2$, the resulting graph G has $\alpha(G) = s + 1$, which contradicts the hypothesis. We deduce that x_1 is adjacent to a pendant vertex which is adjacent to u in $S_\Delta(n - 1, s)$, which implies that $G = S_\Delta(n, s)$.

Case 2. In this case we shall also consider two subcases:

\begin{itemize}
 \item Subcase 2.1: There exists a pendant vertex x_1 such that $d(x_1, C) = 1$ and $\alpha(G - x_1) = \alpha(G) - 1$; and
 \item Subcase 2.2: For all pendant vertices x we have $d(x, C) = 1$ and $\alpha(G - x) = \alpha(G)$.
\end{itemize}
Subcase 2.1. As for Subcase 1.1 we get \(d_2 = d(x_2) \leq s + 1 \) and by the same arguments \(0 R_{\alpha}(G) \leq (s + 1)^{\alpha} + 2^{\alpha}(n - s) + s - 1 = 0 R_{\alpha}(S_\Delta(n, s)) \) holds, with equality if and only if \(d(x_2) = s + 1 \) and \(G - x_1 = S_\Delta(n - 1, s - 1) \). It follows that \(x_1 \) is adjacent to the vertex of degree \(s \) in \(S_\Delta(n - 1, s - 1) \), i.e., \(G = S_\Delta(n, s) \). Since \(d(x_1, C) = \max\{d(x, C) : d(x) = 1\} = 1 \), this equality is possible only for \(n = s + 2 \).

Subcase 2.2. In this case a vertex of \(C \) may be adjacent to a single pendant vertex \(x \), since otherwise we would have \(\alpha(G - x) = \alpha(G) - 1 \) by Lemma 2.4. We deduce that \(G \) consists of \(C \) and some pendant vertices adjacent to vertices of \(C \) such that each vertex \(y \in C \) has its degree \(d(y) \in \{2, 3\} \). We shall prove that in this case \(0 R_{\alpha}(G) < 0 R_{\alpha}(S_\Delta(n, s)) \), a contradiction.

Suppose that on \(C \) there exist four consecutive vertices \(x, u, v, y \) such that \(d(u) = d(v) = 2 \). In this case we shall define a new unicyclic graph \(G_1 \) of order \(n \) by \(G_1 = G - vy + uy \). We deduce \(0 R_{\alpha}(G_1) - 0 R_{\alpha}(G) = 3^{\alpha} + 1^{\alpha} - 2 \cdot 2^{\alpha} > 0 \) by Jensen inequality since \(\alpha > 1 \). If on \(C \) there exist six vertices \(x, r, y, p, s, q \) (\(y \) may coincide with \(p \)) such that \(d(x) = d(y) = d(p) = d(q) = 3 \) and \(d(r) = d(s) = 2 \), we define a new unicyclic graph \(G_2 \) with the same vertex set as follows: \(G_2 = G - \{xr, ry\} \cup \{xy, rs\} \). By the same argument we obtain \(0 R_{\alpha}(G_2) > 0 R_{\alpha}(G) \). If \(G \neq H_n \), by applying step by step this type of transformations we get \(H_n \), such that \(0 R_{\alpha}(H_n) > 0 R_{\alpha}(G) \).

We have \(0 R_{\alpha}(H_n) = k \cdot 3^\alpha + k \) for \(n = 2k \) and \(k \cdot 3^\alpha + 2^\alpha + k \) for \(n = 2k + 1 \) and
\[
\begin{align*}
0 R_{\alpha}(S_\Delta(2k, k)) &= (k + 1)^\alpha + k 2^\alpha + k - 1 \\
0 R_{\alpha}(S_\Delta(2k + 1, k)) &= (k + 1)^\alpha + (k + 1) 2^\alpha + k - 1.
\end{align*}
\]
In both cases, \(n = 2k \) or \(n = 2k + 1 \) the inequalities \(0 R_{\alpha}(S_\Delta(n, \lfloor n/2 \rfloor)) > 0 R_{\alpha}(H_n) \) coincide with
\[
(k + 1)^\alpha - k(3^\alpha - 2^\alpha) - 1 > 0 \tag{3.1}
\]
for every \(k \geq 4 \) and \(\alpha > 1 \). Let \(g(x) = (x + 1)^\alpha - x(3^\alpha - 2^\alpha) - 1 \). We have
\[
\begin{align*}
g(4) &= 5^\alpha - 4 \cdot 3^\alpha + 4 \cdot 2^\alpha - 1 > 0 \text{ for } \alpha > 1 \tag{17} \text{ and} \\
g'(x) &= \alpha(x + 1)^{\alpha - 1} - 3^\alpha + 2^\alpha.
\end{align*}
\]
\(g'(x) \) is strictly increasing and \(g'(4) = \alpha 5^{\alpha - 1} - 3^\alpha + 2^\alpha > 0 \) for \(\alpha > 1 \) [17]. It follows that \(g'(x) > 0 \), hence \(g(x) \) is strictly increasing for \(x \geq 4 \) and \(\alpha > 1 \) and (3.1) is proved. Consequently, we can write \(0 R_{\alpha}(G) \leq 0 R_{\alpha}(H_n) \leq 0 R_{\alpha}(S_\Delta(n, \lfloor n/2 \rfloor)) \leq 0 R_{\alpha}(S_\Delta(n, s)) \) since the last term is strictly increasing in \(s \), a contradiction.

Since the function \(0 R_{\alpha}(S_\Delta(n, s)) \) is strictly increasing in \(s \), \(\lfloor n/2 \rfloor \leq s \leq n - 2 \), we deduce:

Corollary 3.2 ([8, 18]). Let \(G \) be a unicyclic graph of order \(n \geq 7 \). Then for every \(\alpha > 1 \), \(0 R_{\alpha}(G) \) is maximum if and only if \(G = S_\Delta(n, n - 2) = K_{1,n-1} + e \).

A similar result holds for general sum-connectivity index.

Theorem 3.3. Let \(n \geq 3 \), \(\lfloor n/2 \rfloor \leq s \leq n - 2 \) and \(G \) be a unicyclic graph of order \(n \) with independence number \(s \). Then for every \(\alpha \geq 1 \), \(\chi_{\alpha}(G) \) is maximum if and only if \(G = S_\Delta(n, s) \). For \(n = 6 \) and \(\alpha = 1 \) there exists another extremal graph, \(H_6 \).
Proof. We shall use induction on \(n \) in the same way as in the proof of Theorem 3.1. For \(n = 3 \) there is a unique unicyclic graph on three vertices, \(S_\Delta(3,1) = K_3 \). For \(n = 4 \) there are two unicyclic graphs, \(C_4 \) and \(K_{1,3} + e = S_\Delta(4,2) \) and the theorem is verified.

Let \(n \geq 5 \) and suppose that the theorem is true for all unicyclic graphs of order \(n-1 \). Let \(G \) be a unicyclic graph of order \(n \) and independence number \(s \) having maximum general sum-connectivity index. By Lemma 2.2 \(\chi_\alpha(C_n) \) cannot be maximum; it follows that \(\Delta(G) \geq 3 \). Denote by \(C \) the unique cycle of \(G \), whose length is at most \(n-1 \). Let \(x_1 \) be a pendant vertex such that the distance \(d(x_1, C) \) is maximum. We shall consider four cases:

- **Case 1.1:** \(d(x_1, C) \geq 2 \) and \(\alpha(G - x_1) = \alpha(G) - 1 \);
- **Case 1.2:** \(d(x_1, C) \geq 2 \) and \(\alpha(G - x_1) = \alpha(G) \);
- **Case 2.1:** \(\max\{d(x, C) \mid d(x) = 1\} = 1 \) and there exists a pendant vertex \(x_1 \) such that \(\alpha(G - x_1) = \alpha(G) - 1 \);
- **Case 2.2:** \(\max\{d(x, C) \mid d(x) = 1\} = 1 \) and for all pendant vertices \(x \) we have \(\alpha(G - x) = \alpha(G) \).

Case 1.1. Let \(x_1, x_2, x_3, \ldots \) be the path between \(x_1 \) and \(C \). Since this path has maximum length, it follows that \(x_3 \) is the unique vertex in \(N(x_2) \) such that \(d_3 = d(x_3) \geq 2 \). As in the proof of Theorem 3.1 we deduce \(d_2 = d(x_2) \leq s + 1 \).

We have

\[
\chi_\alpha(G) = \chi_\alpha(G - x_1) + (d_2 + 1)^\alpha + (d_2 - 2)((d_2 + 1)^\alpha - d_2^\alpha) + (d_2 + d_3)^\alpha - (d_2 + d_3 - 1)^\alpha.
\]

\(x_2 \) being adjacent to \(d_2 - 1 \) pendant vertices and in \(G - x_2x_3 \) the degree of \(x_3 \) being \(d_3 - 1 \), it follows that \(d_2 - 1 + d_3 - 2 \leq s \), or \(d_2 + d_3 \leq s + 3 \). We get \((d_2 + 1)^\alpha \leq (s + 2)^\alpha \) with equality if and only if \(d_2 = s + 1 \) and \((d_2 + d_3)^\alpha - (d_2 + d_3 - 1)^\alpha \leq (s + 3)^\alpha - (s + 2)^\alpha \) with equality only if \(d_2 + d_3 = s + 3 \). Since by Lemma 2.5 the function \((x - 2)((x + 1)^\alpha - x^\alpha)\) is strictly increasing in \(x \) for \(x \geq 2 \) and \(\alpha \geq 1 \), by the induction hypothesis we obtain

\[
\chi_\alpha(G) \leq \chi_\alpha(S_\Delta(n-1, s-1)) + (s + 2)^\alpha + (s-1)((s + 2)^\alpha - (s + 1)^\alpha) + (s + 3)^\alpha - (s + 2)^\alpha
\]

\[
= (n - s)(s + 2)^\alpha + (2s - n)(s + 1)^\alpha + (n - s - 2)3^\alpha + 4^\alpha + (s - 1)((s + 2)^\alpha - (s + 1)^\alpha) + (s + 3)^\alpha.
\]

By denoting the last expression by \(F(n, s, \alpha) \), we have \(F(n, s, \alpha) \leq \chi_\alpha(S_\Delta(n, s)) \) if and only if

\[
(n - s - 1)(s + 3)^\alpha + (n - s - 1)(s + 1)^\alpha \geq 2(n - s - 1)(s + 2)^\alpha.
\]

(3.2)

Since \(n - s - 1 \geq 1 \), (3.2) is equivalent to \((s + 3)^\alpha + (s + 1)^\alpha \geq 2(s + 2)^\alpha \), which is true by Jensen inequality, with equality only for \(\alpha = 1 \). If the inequality is strict, \(G \) cannot be extremal, a contradiction. For \(\alpha = 1 \) we have equality only for \(d_2 = s + 1 \) and \(d_2 + d_3 = s + 3 \), which implies \(d_3 = 2 \) and \(G - x_1 = S_\Delta(n-1, s-1) \), \(x_2 \) being the vertex of degree \(s \) in \(S_\Delta(n - 1, s - 1) \). In this case we have \(d(x_1, C) = 1 \), which contradicts the hypothesis.
Case 1.2. As in the proof of Theorem 3.1 we obtain \(x_2 = d(x_2) = 2 \) and \(d_3 = d(x_3) \leq \Delta(G) \leq s + 1 \). By the induction hypothesis we get
\[
\chi_\alpha(G) = \chi_\alpha(G - x_1) + 3\alpha + (d_3 + 2)^\alpha - (d_3 + 1)^\alpha
\leq \chi_\alpha(S_\Delta(n - 1, s)) + 3\alpha + (s + 3)^\alpha - (s + 2)^\alpha
= \chi_\alpha(S_\Delta(n, s)),
\]
with equality if and only if \(G - x_1 = S_\Delta(n - 1, s) \), \(d_2 = 2 \) and \(d_3 = s + 1 \), i.e., \(G = S_\Delta(n, s) \).

Case 2.1. In this case \(x_1 \) is adjacent to \(x_2 \in C \). Let \(x_3 \) and \(x_4 \) be the vertices adjacent to \(x_2 \) on \(C \) and denote \(d(x_2) = d_2 \geq 3 \), \(d(x_3) = d_3 \) and \(d(x_4) = d_4 \). We deduce
\[
\chi_\alpha(G) = \chi_\alpha(G - x_1) + (d_2 + 1)^\alpha + (d_2 - 3)((d_2 + 1)^\alpha - d_2^\alpha) + (d_2 + d_3)^\alpha - (d_2 + 3 - 1)^\alpha + (d_2 + d_4)^\alpha - (d_2 + d_4 + 1)^\alpha.
\]
x_2 is adjacent with \(d_2 - 2 \) pendant vertices and in \(G - x_2x_3 \) the degree of \(x_3 \) is \(d_3 - 1 \). It follows that \(d_2 - 2 + d_3 - 1 \leq s \), or \(d_2 + d_3 \leq s + 3 \). Similarly, \(d_2 + d_4 \leq s + 3 \). One obtains
\[
(d_2 + d_3)^\alpha - (d_2 + d_3 - 1)^\alpha \leq (s + 3)^\alpha - (s + 2)^\alpha;
(d_2 + d_4)^\alpha - (d_2 + d_4 - 1)^\alpha \leq (s + 3)^\alpha - (s + 2)^\alpha.
\]
Since \(d_2 \leq s + 1 \), by Lemma 2.5 we deduce
\[
(d_2 - 3)((d_2 + 1)^\alpha - d_2^\alpha) \leq (s - 2)((s + 2)^\alpha - (s + 1)^\alpha).
\]
By the induction hypothesis we get
\[
\chi_\alpha(G) \leq \chi_\alpha(S_\Delta(n - 1, s - 1)) + (s + 2)^\alpha + (s - 2)((s + 2)^\alpha - (s + 1)^\alpha)
+ 2(s + 3)^\alpha - 2(s + 2)^\alpha
= (n - s)(s + 2)^\alpha + (2s - n)(s + 1)^\alpha + (n - s - 2)3^\alpha + 4^\alpha
- (s + 2)^\alpha + (s - 2)((s + 2)^\alpha - (s + 1)^\alpha) + 2(s + 3)^\alpha.
\]
This upper bound is less than or equal to \(\chi_\alpha(S_\Delta(n, s)) \) if and only if
\[
(n - s - 2)(s + 3)^\alpha + (n - s - 2)(s + 1)^\alpha \geq 2(n - s - 2)(s + 2)^\alpha. \tag{3.3}
\]
If \(s = n - 2 \) then (3.3) is an equality, \(S_\Delta(n - 1, s - 1) \) has no pendant path of length 2, it coincides with \(K_{1,n-2} + e \), \(d_2 = s + 1 \), \(d_3 = d_4 = 2 \) and all inequalities become equalities. In this case \(G = S_\Delta(n, s) \). If \(s < n - 2 \) then \(\chi_\alpha(G - x_1) < \chi_\alpha(S_\Delta(n - 1, s - 1)) \) since \(S_\Delta(n - 1, s - 1) \) has pendant paths of length 2 and \(G - x_1 \) does not have by hypothesis. If \(s < n - 2 \) then (3.3) is valid by Jensen inequality (for \(\alpha = 1 \) (3.3) is an equality), but in this case we have \(\chi_\alpha(G) < \chi_\alpha(S_\Delta(n, s)) \), a contradiction.

Case 2.2. As in the proof of Theorem 3.1 we deduce that \(G \) consists of \(C \) and some pendant vertices adjacent to vertices of \(C \) such that each vertex \(y \in C \) has its degree \(d(y) \in \{2, 3\} \). We shall prove that in this case \(\chi_\alpha(G) < \chi_\alpha(S_\Delta(n, s)) \) unless \(\alpha = 1 \) and \(G = H_6 \), a contradiction.
Suppose that on C there exist four consecutive vertices x, u, v, y such that $d(u) = d(v) = 2$. In this case we shall define a new unicyclic graph G_1 of order n by $G_1 = G - vy + wy$. We deduce

$$
\chi_{\alpha}(G_1) - \chi_{\alpha}(G) = (d(x) + 3^{\alpha} + (d(y) + 3^{\alpha} - (d(x) + 2)^{\alpha} - (d(y) + 2)^{\alpha} > 0.
$$

If on C there exist six vertices x, r, y, p, s, q (y may coincide with p) such that $d(x) = d(y) = d(p) = d(q) = 3$ and $d(r) = d(s) = 2$, we define a new unicyclic graph G_2 with the same vertex set as follows: $G_2 = G - \{xr, ry\} + \{xy, rs\}$. We obtain

$$
\chi_{\alpha}(G_2) - \chi_{\alpha}(G) = 3 \cdot 6^{\alpha} + 4^{\alpha} - 4 \cdot 5^{\alpha} > 0
$$

since $6^{\alpha} + 4^{\alpha} \geq 2 \cdot 5^{\alpha}$ and $2 \cdot 6^{\alpha} > 2 \cdot 5^{\alpha}$. If $G \neq H_n$, by applying step by step this type of transformations we get H_n, such that $\chi_{\alpha}(H_n) > \chi_{\alpha}(G)$.

We have $\chi_{\alpha}(H_n) = k6^{\alpha} + k4^{\alpha}$ for $n = 2k$ and $(k - 1)6^{\alpha} + k4^{\alpha} + 2 \cdot 5^{\alpha}$ for $n = 2k + 1$. We get

$$
\chi_{\alpha}(S_{\Delta}(2k, k)) = (k + 3)^{\alpha} + (k + 2)^{\alpha} + (k - 2)^{\alpha} + 4^{\alpha} \quad \text{and}
$$

$$
\chi_{\alpha}(S_{\Delta}(2k + 1, k)) = (k + 1)(k + 3)^{\alpha} + (k - 1)^{\alpha} + 4^{\alpha}.
$$

We shall prove that $\chi_{\alpha}(S_{\Delta}(2k, k)) \geq \chi_{\alpha}(H_n)$ for $n = 2k$ and $k \geq 3$ (equality holds only for $k = 3$ and $\alpha = 1$) and $\chi_{\alpha}(S_{\Delta}(2k + 1, k)) > \chi_{\alpha}(H_n)$ for $n = 2k + 1$ and $k \geq 2$. Since for $n = 5$ and $n = 7$ it can be easily verified that there is no unicyclic graph of order n in Case 2.2, it follows that for $n = 2k + 1$ we may consider that $k \geq 4$. It follows that it is necessary to show that (3.4) holds for $k \geq 3$ (with equality only for $k = 3$ and $\alpha = 1$) and (3.5) is true for $k \geq 4$.

$$
k(k + 3)^{\alpha} + (k + 2)^{\alpha} + (k - 2)^{\alpha} + 4^{\alpha} \geq k6^{\alpha} + k4^{\alpha} \quad (3.4)
$$

$$
(k + 1)(k + 3)^{\alpha} + (k - 1)^{\alpha} + 4^{\alpha} > (k - 1)6^{\alpha} + k4^{\alpha} + 2 \cdot 5^{\alpha} \quad (3.5)
$$

For $\alpha = 1$ (3.4) is equivalent to $k^2 - 3k \geq 0$ with equality only for $k = 3$. Suppose that $\alpha > 1$ and let

$$
\rho(x) = x(x + 3)^{\alpha} + (x + 2)^{\alpha} + (x - 2)^{3^{\alpha}} - (x - 1)4^{\alpha} - x6^{\alpha}.
$$

Since $\rho'(x)$ is strictly increasing for $x \geq 3$, we get

$$
\rho'(x) \geq \rho'(3) = 3\alpha 6^{\alpha-1} + \alpha 5^{\alpha-1} + 3^{\alpha} - 4^{\alpha} > 0
$$

for $\alpha > 1$ [17], which implies $\rho(x) \geq \rho(3) = 5^{\alpha} + 3^{\alpha} - 2 \cdot 4^{\alpha} > 0$ for $\alpha > 1$ by Jensen inequality. This proves (3.4).

Similarly, let

$$
\varphi(x) = (x + 1)(x + 3)^{\alpha} + (x - 1)3^{\alpha} - (x - 1)6^{\alpha} - (x - 1)4^{\alpha} - 2 \cdot 5^{\alpha}.
$$

Since $\varphi'(x)$ is strictly increasing in $x \geq 4$ for $\alpha \geq 1$ and

$$
\varphi'(4) = 7^{\alpha} + 5\alpha 7^{\alpha-1} - 6^{\alpha} - 4^{\alpha} + 3^{\alpha} > 0
$$

for $\alpha \geq 1$ [17], it follows that for $x \geq 4$ we have

$$
\varphi(x) \geq \varphi(4) = 5 \cdot 7^{\alpha} + 3 \cdot 3^{\alpha} - 3 \cdot 6^{\alpha} - 3 \cdot 4^{\alpha} - 2 \cdot 5^{\alpha} > 0
$$
for \(\alpha \geq 1 \) \cite{17} and (3.5) is justified.

Consequently, if \(G \neq H_6 \) we can write

\[
\chi_\alpha(G) \leq \chi_\alpha(H_n) < \chi_\alpha(S_{\Delta}(n, \lfloor n/2 \rfloor)) \leq \chi_\alpha(S_{\Delta}(n, s))
\]

since by Lemma 2.3 the last term is strictly increasing in \(s \), a contradiction. \(\square \)

References

